FEA software with CAD integration

Autodesk® Nastran® In-CAD finite element analysis (FEA) software uses Autodesk Nastran solver and integrates with compatible software to simulate real-world behaviour. Solve engineering challenges before you begin manufacturing.

Page view:

    Advanced analysis

  • Frequency response

    Determine the structural harmonic response based on frequency-dependent loads. Recover displacement, velocity, acceleration, stress and strain. Identify how a structure responds to a given load across a range of excitation frequencies.

  • Impact analysis

    Autodesk Nastran In-CAD uses the Autodesk Nastran solver for more accurate and faster non-linear transient analysis. This type of analysis can include all types of nonlinearities at the same time: large deformations, sliding contact and non-linear materials. 

  • Normal modes

    Assess potential problems, such as vibration-related operator fatigue or structural fatigue, due to structural loading in generators, rotating equipment or anything mounted on a vibrating platform. View the normal modes or natural frequencies of a structure that might be subject to dynamic loading. Understanding normal modes can help guide you to reduce the impact of shaking or vibration by redesigning or reorienting loads.

  • Prestress normal modes

    A standard modal analysis cannot account for applied loads. Autodesk Nastran In-CAD software provides specific tools to capture true stiffness when complex loading is present. Like the strings in a guitar or piano, increased tension levels can affect the operational stiffness and dramatically increase the natural frequency of a structure. Tools include spinning shafting and pressure vessels.

  • Random vibration fatigue

    Gain insight on long-term structural robustness for products whose operation must be characterised by power spectral density inputs, such as aircraft and spacecraft structures and industrial equipment. Structures subjected to road load or fluid flow-induced vibration experience dynamic energy that cannot be quantified simply by frequency and amplitude. Loading over a representative period can indicate some consistency and predictability.

  • Non-linear static and transient response

    This feature lets you capture all forms of nonlinearity in transient or time-varying events so you can better explore dynamic responses to dynamic loads, or impulses that result in resonant vibration or stress amplification. 

    Show material nonlinearity (material stress-strain data), contact (opening and closing of gaps and sliding) and large displacement and rotation (large deflection) effects in analysis models for interlocking equipment and gears and blast analysis. You can also include transient and inertia effects.

  • Automated drop test

    Simplify and automate a complex, time-consuming simulation task. Automated drop test is ideal for performing projectile impacts and virtual drop tests for items such as:

    • Phones
    • Laptops
    • Consumer products    

    The test requires a minimum of input data for the analysis - projectile velocity and acceleration - to determine the time steps, duration and complex contact interaction between projectile and target. The analysis provides a thorough and physically realistic simulation of impact. It also offers insight into dynamic, implicit, non-linear behaviour or real-world impact problems.

  • Surface contact

    Autodesk Nastran In-CAD software includes contact modelling options to help you to explore more natural interactions between parts and to help alleviate guesswork on a simplified load or restraint. The Autodesk Nastran In-CAD solver makes easier work of inherently non-linear computations. Model press-fits, gears, mechanical comonents and assemblies with different kinds of contact, including sliding, friction and welding, to produce simulations with real-world fidelity.

  • Advanced material models

    Capture complex non-linear phenomena such as plasticity (post-yield permanent set), hyperelasticity (elastomers) and shape-memory effects. Model a wide range of materials, from metals to rubbers and soft tissue, in a single virtual test. Prediction with simple material models can lead to erroneous design decisions. Non-linear options in the material library include resilient mounds, composite materials, fracture and failure analysis and more.

  • Composites

    Take advantage of simple handling of complex ply data. Get reliable and insightful results from analysis based on failure indexes, like Puck and LaRC02. Progressive ply failure analysis helps determine how a composite structure responds beyond first ply failure. 3D solid composite element analysis accurately captures transverse shear in composite structures.

  • Transient response

    Determine the response of a structure over a period of time under the influence of constant or time-dependent loads. Static analysis shows how a structure will respond to loading. In the event of impulse loading or other time-dependent loads, structures may behave differently to their end state. Transient response helps you to investigate the behaviour of a part on its way to this end result.

  • Random response

    Analyse the structural behaviour in response to the imposition of random dynamic loads. Simulated conditions include road vibration, wave cycles, engine vibration and wind loads.

    Open & integrated experience

  • Inventor integration

    Extend Autodesk Nastran In-CAD software by combining it with Inventor 3D CAD software. Use embedded FEA technology to solve problems that go beyond the linear static studies in Inventor Professional. Turn your 3D CAD system into a FEA platform for seamless design and analysis. 

    Edit dimensions inside Inventor. Changes can be reanalysed within the CAD design environment and there is no need to send the model back and forth between systems. The finite element domain of loads, boundary conditions and meshes are updated interactively.

  • SOLIDWORKS integration

    Autodesk Nastran In-CAD brings the Autodesk Nastran solver, known for its proven and accurate results, directly to the SOLIDWORKS environment. Reduce your learning curve, maintain your productivity, avoid compatibility issues and get the best cost for professional-level FEA.

    You get the same working environment with menus, tree-type structures and a familiar look and feel for creating finite models and viewing the results of your analysis. Autodesk Nastran In-CAD is completely compatible and uses true geometry associativity. This means your loads, boundary conditions and meshes update interactively in SOLIDWORKS. 

    Key benefits of integration with SOLIDWORKS:

    • More advanced meshing technology means greater accuracy for geometrically complex models.
    • Faster automated contact generation means better accuracy for assemblies.
    • More reliable beam element modelling reduces surprises on thin-member assemblies.
    • More accurate non-linear and dynamic abilities and advanced material models support results you can use to make informed design decisions.

    In addition, teams can easily share the software across multiple locations and different CAD systems.

  • Autodesk Nastran solver

    The Autodesk Nastran solver analyses composites, advanced dynamics, non-linear and heat transfer, in addition to the traditional linear statics and normal modes. Results accuracy is routinely tested against NAFEMS standards and more than 5,000 additional verification benchmarks. 

    Key benefits include:

    • Proven and recognised FEA technology
    • Pre- and post-processor compatibility
    • Scalability for future simulation needs
    • Real-time analysis and results

    Efficient modelling

  • Automatic midplane mesher New

    Now you can automatically idealise solid CAD parts as shell. This lets you reduce model size and provide more accurate results for thin parts.

  • Frame Generator idealisation New

    Open models that were created using Frame Generator in Autodesk Nastran In-CAD software. Select which members will be automatically idealised as beams and updated with material and cross-section information.

  • Beam modelling

    Represent a long, slender component with a very small number of elements instead of hundreds to thousands of solid elements. Cross-section or geometry optimisation is more accessible, thanks to the speed and improved accuracy these elements bring to appropriate models.

  • Bolt and connection

    Use automatic bolt connector modelling with preload to simplify common and complex fastening simulations. Include axial or torsional preload so that the assembled nature of a bolted machine or structure responds more naturally to active loads. Easily mesh models and run the solver for bolts and connections analyses.

    Linear, stress & thermal analysis

  • Static fatigue

    Determine the durability of structures under repeated loading, including low- and high-cycle fatigue. Measure durability by the number of cycles to failure or the cumulative damage. Loading can be simple or multi-axial.

    Fatigue is one of the most damaging failure mechanisms in all industries where dynamic loading is present, simply because concepts like peak load and maximum stress cannot be used for prediction. Fatigue life requires the long-term damage caused by multiple loads over millions of cycles. Fatigue simulation in Autodesk Nastran In-CAD software provides tools to help you to evaluate this damage and gain control over this response. Use these tools to evaluate equipment such as:

    • The fork crown on a bicycle suspension
    • Rotating shafts
    • Industrial machine equipment
    • Ship board equipment
  • Heat transfer

    Use the principles of conduction and convection heat transfer to examine designs for equilibrium temperature distribution. Predict both the temperature changes and the downstream effects.

    Thermal effects, such as temperature rise or drop-over ambient, are responsible for engines seizing and brake system failure in automobiles. Thermal expansion/contraction affects fit and operation, while stresses caused by thermal expansion/contraction can render an otherwise operational design useless.

    Thermal heat transfer, as well as thermal expansion analyses, help you to prevent assembly failure due to high-stress concentration: for example, a rotor on a brake. Use the included tools to learn how a displacement affects stresses in compressors, engines, pipes, ducting, vent supports and more.

  • Linear buckling

    Analyse designs inside Inventor software or Dassault SOLIDWORKS for buckling. Buckling may occur in areas where compression causes a loss in stiffness, which can be overlooked and have costly consequences.

    Find out if the material used for your column, beam structure or other model does not yield, then make sure that the model will not buckle under certain loads. Modify the model dimensions within your CAD environment to avoid catastrophic failure for loading conditions.

  • Linear statics

    Determine stress, strain and deformation that results from applied static loads and imposed constraints - one of the most common types of analysis. Apply loads and constraints to your parametric part. The Autodesk Nastran solver provides results that you can display in a wide variety of formats.

NASTRAN is a registered trademark of the National Aeronautics and Space Administration.

SolidWorks is a registered trademark of Dassault Systèmes SolidWorks Corporation.